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MODELING AND SIMULATION OF RANDOM SHAPES BY SCULPTURED

WRAPAROUND: PRELIMINARY REPORT

Donald P. Gaver

Patricia A. Jacobs

1. Introduction

Physical objects with boundaries that are irregular-random shapes—occur

in profusion in the natural world. Geographical examples range from the

continents to small islands, from oceans to lakes to ponds, and from massive

ice-covered regions in the Arctic and Antarctic to individual ice floes and

icebergs, and their complements, the open spaces or leads in ice fields. There

are also important random shapes of biological and medical interest and

concern. Those who do remote sensing, either of the atmosphere (clouds),

the earth or a planet, from satellites will be interested in describing the shapes

observed. Those interested in outlining the shapes of mineral or petroleum

deposits encounter also the problem of describing the objects of their search.

We propose here some possible alternatives.

It appears that there are relatively few mathematical models for flexibly

describing such random shapes. The literature is scattered, and no attempt

will be made here to cover it. The writer has examined books by Solomon

(1978) and Ripley (1981), but the present focus is different. The work of

Kendall and his co-workers may be relevant, cf. Kendall (1985,1989).

Our primary objective at this time is to suggest and explore relatively

simple ways of modeling or simulating random shapes that resemble those

that occur in nature. Another objective is to describe such shapes as they may



result from an image processing or filtering algorithm's treatment of the basic

shape plus a characterization of a noise. Very few detailed analytical results

are provided here. Rather, there will be proposals for future work to expand

understanding of the basic approaches to be described.

2. Random Shapes by Perturbation of Regular Shapes

Many of the two-dimensional irregularly shaped bodies encountered in

nature are rather regular or even symmetrical in general outline but

possessed of irregular boundaries. We proceed to simulate such figures by

starting with a circular disk-like central figure and adding to its perimeter a

random process. As will be clear from Figures 1-2, the results are of an

interesting qualitative character; that character can be easily changed by

manipulating a few parameters. Furthermore, analytical facts can, in various

cases, be deduced about features of the shapes so generated. There remains

much more to be done in that direction, however.

Example 1: Shapes with Circular Centrality and Ornstein-Uhlenbeck
Boundaries

An especially simple version of our general approach is to represent the

boundary of a two-dimensional random shape as follows in polar

coordinates:

0(t) = t, < t < 27C

(1)

R(t) = r + f(X(t))

where X(t) is an Ornstein-Uhlenbeck (diffusion) process

dX(t) = -aX(t) + odW(t), I a I < 1, (2)



with (dW(t)} the increment to a standard Wiener process, and f(x) > for any

real x. Useful versions of f are f(x) = ekx and f(x) = x2
. These guarantee that the

RADIUS = R + ((0.-U.)*2)

1

R= 2;RH0= 0.4;SIG=1 ;H = 0.005

i

CN

(

>- O

CM

7 X. ;*•* ;/

1

I
i

i i i i

'

)

i i

-2

X

2

Figure 1. r = 2, f(x) = x ; the parameters of the O.U. process are a = 1.0, a = 0.4

perimeter of the random shape is always outside that of the regular shape

underlying the process, namely that of a circular disk of radius r. See Figures

1 and 2 for various realizations of the above; they are of course generated by

discretizing time (= angle 0) and replacing X(t) by an equivalent AR-1 process;

the process then starts at t = = with a random draw from a distribution

resembling the O.-U. stationary distribution and is plotted going counter-



clockwise around to t = = 2k. The ellipse in each figure is the graph of a

circle of radius 2 for the scale of the figure. Note that there is an anticipated

(small) jump at the seam at t = = 2k which can be mended in various

plausible ways. One such is to force the random boundary function X(t) to be

a bridge, so X(0) = X(27c). This is aesthetically pleasing, but probably

unnecessary from a practical viewpoint. It seems natural to call the

construction suggested a wraparound process.

( RADIUS= R-EXP(.5x(0.-U.))

R= 2;RHO=0.4;SIG=1 ;H= 0.005
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Figure 2. r = 2, f(x) = exp(^ x// the parameters of the O.U. process

are a = 1.0, a = 0.4



Certain analytical results are available directly; others will require more

careful attention. For example, let A be the area of the random shape

generated as described. Then, by polar coordinate rules

2

V/(x«)):
21

= Kr
2
+ rjf(X(t))dt + \"jf(X(t)fdt.

A=\ (r + /(X(/)))
2I*

2k

I

2k

Now take expectations to find

r

E[.4] = Kr
2
+ r

J
E[f(X(t))]dt + ±

J
E|/(X(/))

:

2n

\

2tc

J
dt.

Suppose f(x) = ekx ; then if X(t) is O.U. as in (2) we know that

( 2 \

X(f)~K X{0)e-
at,—(l-e-2at

)

(3)

(4)

(5)

so

Suppose X(0)~N

,+kX(t)

a2 ^

= exp kX(0)e-
at +—^(l-e-2at

)

0,
2a

, the stationary distribution. Then, if so, the

unconditional distribution of X(t) ~ N
a2 ^

o,

la
independent of t for all t, and we

can easily evaluate the mean of the area, A, for any f:

E[A] = nr
2 + 2nr\E[f(X)] + h\f2

(X) (6)

For f(x) = ek* we ge t



E[A] = Kr
2 + 2nrLk2a2/*a +±ek2(j2/a

\ (7)

which shows that as the correlation coefficient a approaches zero, and the

boundaries become exceedingly jagged, the area tends to increase at an

exponential rate. Likewise, if C is a random chord that crosses through the

center of the figure then

C = 2r + /(X(0)+ /(X(t + *)) (8)

and if X(t) is given the stationary distribution then

E[C] = 2r + 2E[/(X)]/ (9)

which in the case f(x) = ekx yields

E[C] = 2r + 2e
k2°2/4a

(10)

which again suggests the increase in dimension of the shape as a tends to

zero.

Covariances of radii can be obtained analytically, and from these the

variance of an area. It is also of interest to ask for the expected length of the

maximum central chord.

Example 2. The previous process, summed.

There is nothing to prevent one from summing or convex-combining

several contributions to the boundary:

R(f) = r + ^(X,(0) (11)

where, for example, Xj(t) ~ O.U. (<Xj, o"j) means that the component processes

are Ornstein-Uhlenbeck with their individual parameters. Likewise, the

correlation and innovation variance parameters can themselves be,



minimally, time-dependent, and possibly even governed by driving stochastic

processes, optionally taken to be of the forms

(*i(t) = e
r*W / 1 + e

yM (Logistic) (12)

and

a
i
{t) = e

1^ (Log-Linear) (13)

with Yj(t) and Z,(t) themselves taken to be appropriate stochastic processes,

not necessarily independent and, most conveniently but not necessarily

Gaussian. There are many options here, including that of allowing the radius

of the basic circular disk to be itself a random process that, perhaps, tends to

grow or shrink in time. A candidate for r(t) is the radial Brownian motion or

Bessel process; see Feller (1966) Chap. X, Section 6, although there are a great

many other options. The O.-U. is illustrative and convenient but certainly

not intended to be exclusively, if ever, entirely appropriate.

Example 3: Perturbing Natural Shapes

It may be of interest to start with a natural shape, e.g., an ice floe or

atmospheric cloud image, and perturb it by a known process, such as the log-

O.-U. This could well represent the appearance of the image of the same

entity at a different time point, e.g., at a time when a satellite next passes; the

difference in apparent shape could be the result of natural processes plus

noise.

Suppose a group of such entities exists, each one of which is imaged at

time t, again at t+x at which time shape has been randomly modified as

described above, ... and so on with another image take at t+kx with further

random perturbation, at each time. Then an important problem is to identify



and track each member of the group over time, under the handicap that

shape change can hamper identifiability across different satellite passes. It is

proposed to study the above problem, and to investigate the manner in which

item identifiability degenerates as the variation in the perturbing boundary

process increases.

Note that it is possible to estimate the parameters of the perturbing

boundary process f(X(t)) by a) first smoothing the figure's perimeter, perhaps

by the techniques of Banfield and Raftery (1989), and b) modeling the residual

process: the difference of the real/ true perimeter and the smoothed

perimeter; that difference should be taken orthogonally to the smooth.

Comment: Relation to "Sculpturing"

It was Tukey who originally suggested simple ways of lengthening (or

shortening) the tails of distributions such as the Gaussian: if Z is N(0,1) then

Y = ZehZ, h > (14)

has zero mean but larger variance owing to the extended tail imposed by ehz .

If h < then the tail of the distribution of Y is shortened. Such an idea could

be applied point-wise to X(t), e.g., O.-U. from (2) to generate a controllable-

shaped boundary: replace X(0) by Y(0)=Y(t) = X(t)exp[hX(t)]. One could even

allow the sculpturing parameter h to be angle-dependent, e.g., let h(0) = -0.2

for 0<9<7t, h (0) = +0.2 for 7t<0<27i should result in a figure or shape that is

flatter on one side (between and k) and more jagged on the other (between n

and In). There is no trouble at all to allow the sculpturing parameter h to be

itself a random process i.e., replace constant h by H(0)=H(t). Furthermore,

summary statistics are relatively easy to compute if X(0) is sampled from the

stationary distribution of (X(t)}, presuming the latter to exist. Note that the

8



sculptured figures are exceedingly easy to simulate on a computer: simply

generate X(t), and then multiply by exp[hX(t)] to obtain the boundary value at

t = 0. [The result is a sculptured wraparound process that may be induced to

take on natural-appearing shapes by changing a few parameters.]

For an account of general random variable sculpturing see Gaver, et al.,

(1979) and Gaver (1983). Here we are actually sculpturing a figure or shape,

and by a stochastic process realization.

Application

A report by Banfield and Raftery (1989) suggests application of a non-

parametric smoothing technique to better delineate, and identify ice floes.

Different satellite images of the same ice floe may differ somewhat, and the

B-R procedure should be of help in identifying floes (that have not broken up

or experienced edge-alteration) as the same when depicted by different

images. Their examples suggest that the procedure works well.

It may be of help to check the effectiveness of B-R smoothing when

perturbation or sculpturing of a known principal curve (e.g., circle; or one

actually derived from real data) with a boundary or perimeter of known

stochastic structure is in place. One simple mechanism for generating such a

boundary is to utilize our procedure described above. In order to determine

the nature of the parameter for the perturbing process f(X(t)) an examination

of residuals (Tukey's "rough") obtained from the estimated principal curve

(Tukey's "smooth") should be of use. It is our proposal to attempt such an

investigation. It may also be found that procedures less computer-intensive

than those of B-R can be nearly as effective.



A general question of applied interest might be the use of remote sensing

(by satellite) of ice floes to infer forces causing their (relative) motion, that is,

the magnitude of winds or currents between successive satellite passes could

account for the changes of relative ice floe positions. Consequently, study of

position changes of ice floes might provide a remote inference concerning

near-surfaces forces. For this to work, identifiability of individual ice floes

seems of considerable importance. Such an approach, to infer surface wind

speed from satellite sensed white-cap cover, has been taken by Monahan and

O'Muircheartaigh (1980).
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APPENDIX A. GENERALIZING THE ORNSTEIN-UHLENBECK PROCESS

The purpose of this note is to examine a model analogous to the

Ornstein-Uhlenbeck (O.-U.) process, in which innovations are allowed to

have symmetric stable laws, cf. Feller (1968), rather than be simply Gaussianly

distributed bits of standard Wiener processes. In particular, such processes

can have Cauchy innovations. The purpose of this is to introduce processes

that give rise to long tails that can provide more adjustable behavior for

image boundaries.

Thus for arbitrarily small h > we write

X(t + h) = X{t)-phX(t)+rhe
t

(A-l)

where e t has, concretely, the Cauchy density

U i

IT U + x'J
(A -2)

For this distribution the characteristic function (ch. fen.) is

¥E\eiee ' = ?l«l

In the most general case, that of a symmetric stable law,

j'0e, = e^
a
,l<a<2;

(A -3)

(,4-4)

if cc=2 it is recognized that innovations are Gaussian.

Put

(p(0,t) = E
,iOX{t)'

(A -5)

12



the ch. fen. of X(t); we keep implicit the initial condition X(0). In general 9

must be a real number in order that the rhs of (A-4) be finite. Derive an

equation for cp as follows. Write

,i6X(t+h) = E

= E

W{X(t)(\-ph)+The
t }

i*{X(0(l-pfc)}' JOzhet = <p{d(\-ph),t)e M\e\
u

(A-6)

by the assumed independence of successive innovations; note that it is

necessary to scale innovations so that r
a
h
a = £h for fixed £, or

T = (

tVa
h
(l-a)/a

for fixed ^ If h becomes small/

,i8X(t+h)
^(p{6,t + h)~ ( d

(p(dS) +^mt)\-pO)h + o(h 2
)[\-hZ\d\

a +o(h 2 j\(A-7)

This done, then

(p(0,t + h)-(p{d,t)
-po^-ZWa 9+o(h) (AS)

and if h—>0 the following quasi-linear first-order partial differential equation

results:

dt
w

se
" (A-9)

Steady-State or Long-Run Solution

Suppose

\\m<p(0,t) = <p*(6)
t—>°°

(A-10)

is a bona-fide ch. fen. of an honest distribution. This is at least plausible since

p>0 and there is a restoring force tendency in the dynamics of (A-l). We then

have the ordinary first-order differential equation

13



pd
dG

a #ma
<p (A-U)

or

where

ff P Q P

,m _ r+i if (9>o

(A -12)

(A -13)

Write (A-12) as

and integrate to obtain

d(p %\n\a-\'

T = -±\e\
a
^d\d\

(p p

(p\0) = exp z

pa
lei" (A -14)

This is the ch.fcn. of a symmetric stable law, as before. If a=2, cp
# is the ch. fen.

of a Gaussian/Normal with variance ^/p, as is used earlier, (2). If a=l, cp
#

represents a Cauchy distribution with scale parameter ^/p. Other special cases

may exist, but are far less familiar and convenient.

Transient Solution

The equation (A-9) can be solved by the standard method of

characteristics; see Street (1973). Another approach that reveals the

underlying structure of the process is this: express (A-l) as

dX(t) = -pX(t)dt + m
t
dt {A - 15)

14



or formally as

dX

dt
= -pX(t)+TE

t
. (A -16)

Note that we can allow p to depend on t at no cost:

dX

dt
= -P(t)X{t)+TZ t

. (A-\7)

Use the standard integrating factor:

d_

dt
X(t)e&

p{x)d>

= re
t
e
?oP(x )

dx
. (A -IS)

so if X(0) = Xq,

X(t) = xJ°^dx
+ ]e-

J>ix)dX
ct

I e
y

'

TZydy. (A -19)

Clearly X(t) has the structure of a weighted sum of components; a typical

member of the integrand being

-lip(x)*>
TEydy.

Therefore

,i6X(t)
exp< ie

v tp{x)dx r -fv P(x)dxXQe
}° v ; +\e y ttydy

= E exp{ i9XQe
}°
&p(x)dy

exp
jtp(x)dx
y ttydy

o

(/l -20)

(A -21)

15



{. -fp(x)dx
Now think of the integral

J
e y xz

y
dy as approximated by a sum of

elements, a typical value being (A-20). Use the independence of successive E
y

contributions to obtain

I it

expliOli
Lp( x

)
d>

rz
y
dy = eM-\e\

a\e^>[x)d
^dy {A- 22)

for, by the fact that e
y
obeys a stable law

exp
-fp{x)dx

ide y TZydy = exy\-\d\
a
e

-aM*)**
r
a
(dy)

a
(A -23)

a, , .a .

again we have put t,dy-x (dy) just as was done before. It follows that the

solution to (A-9) must be

(p(ej) = expli6X e-
pt

-\d\
a ^(l-e-aP t

)\ (A-24)

Thus for fixed t,

X(r) ~ Stable
( F

center = XQe~
pt

, scale = -^-fl-e"
a^)

a
; index = a ;(A-25)

the center is the mean and the scale is the standard deviation in the

Gauss/Normal case a = 2. Of course (A-25) agrees with (A-14) as t—><*>, and

differentiation will show that (A-24) solves (A-9). Note: the rate of approach

to steady state, ap, increases with a, so the Gauss/Normal case (classical O.-U.)

approaches steady-state more quickly than does the analogous Cauchy-driven

O.-U. with same p.

16



Simulation

In order to simulate X(t) it will be necessary to discretize time into, say,

h-increments; the result will be a path or trajectory Xh (t). In order to obtain

the desired marginal distributions, e.g., (A-25) simply use (A-l), i.e.

X(t + h) = X(t)-phX(t)+zhe
t

, t = 0,h,2h,...

where t= ^
/aM

~ a
)
/a and e, is an a-stable random variable with unit scale.

For example(s):

2

a = 2; e
t
is a draw from e I -Jin (Normal density)

a = 1; £j is a drawn from n\\ + x
j

(Cauchy density).

For fixed £ and p the paths of the Cauchy O.-U. should tend to exhibit

more long-range order than those of the Gauss O.-U. The option of choosing

p=p(t) allows further freedom in adjusting path behavior.

Reference

R. L. Street (1973) Analysis and Solution of Partial Differential Equations.

Brooks-Cole Publishing Co. (Wadsworth), Monterey, CA.

17



APPENDIX B. BRIDGE PROCESSES

One feature common to Figures 1 and 2 is the jump that appears at the

seam of t=0=27i. The purpose of this Appendix is to describe one procedure to

obtain shapes that are "seamless." To this end processes for the Ornstein-

Uhlenbeck (O.-U.) and Cauchy autoregressive processes are introduced that

correspond to the Brownian Bridge.

Let {W(t); 0<t<l} be a standard Brownian motion process with W(0)=0.

Recall that a Brownian Bridge can be obtained by the transformation

B(t) = W(t)-tW(l), 0<t<l;

note that B(l) = B(0) = 0; cf. Karlin and Taylor (1980).

In a similar spirit let (X(t), t>0) be an O.-U. process or a generalization of it

as described in Appendix A with X(0) = 0. We will define a Bridge process as

U(t) = X(t)-tX(l), for 0<t<l.

Note that X(0) = X(l) = 0. One way not to have X(0) = X(l) = is to add a

random variable U° to U(t) having the stationary distribution of (X(t); t>0}.

Let (X(t); t>0} be an O.-U. process with drift coefficient -p, infinitesimal

variance a2
, and X(0) = 0. Set

Y(t) = X(t)-tX(l) / 0<t<l.

{Y(t); t>0) is a Gaussian process with mean 0. Further, for s<t

E[Y(0Y(S)]=E[(X(0-tX(l))(X(s)-sX(l))]

= E[X{t)X(s)]-tE[X(\)X(s)]-sE[X(t)X(\j\ + tsE\x(\)
2

.

= ^-P^yps _ 1 j
_ te

-p{^syPs _ 1
j

_ se
-P(MyPt _

!j
+ tse-2p^e2p _

^j

18



Thus,

E[y(0
2

]
= Var[Y(f)]

= ^[(l-e-2P t )-2te-^M\c
2P t

-l) + t
2
(l-e-

2P)

Simulation.

The O.-U. Bridge can be simulated as follows. X° is generated from a

normal distribution having mean and variance o 2 /2p. The Ornstein-

Uhlenbeck process is simulated as X(0)=0

X(t+h) = X(t)-phX(t)+Vh Et

where (Et) is a sequence of independent normal random variables with mean

and variance a2
. A bridge is created by calculating

U(t) = X(t)-tX(l) < r < 1.

The random variable X° is added to U(t) to obtain the process

U{t) = U{t) + X°.

In the figure IB, the radius of the shape at time 2nt is taken to be

R + \U(t)\.

The parameters of the simulation are R = 2, p = 0.4, a = 1 and h = .005. The

ellipse in the center of the figure is the circle of radius 2 for the scale of the

picture.

The Cauchy Bridge is simulated as follows. X° is generated from a Cauchy

distribution having density function

19



/»(y) = («/p)-
,
-lfl + (yp/^)

2r
1

.

7TL J

In the simulation,

x(o) = o

X(t + h) = X{t)-phX(t) + fr{t)h < t < 1

where (e(t)} is a sequence of independent standard Cauchy random variables.

A Bridge is created by calculating

U(t) = X(t)-tX(l). 0<t <1.

Finally, a Bridge not tied down at is obtained by setting

U(t) = U(t) + X°.

In Figure 2B the radius of the shape at time 2nt is taken to be

R + \U(t%

The parameters of the simulation are R = 2, p = 0.4, h = 0.005, and ^ = 0.8.

Once again the ellipse in the center is the circle of radius 2 for the scale of the

figure.

Reference

S. Karlin and H. M. Taylor (1981) A Second Course in Stochastic

Processes. Academic Press Inc., New York.
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